Renormalized Solutions of Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

Mostafa EL MOUMNI
Department of Mathematics, Faculty of Sciences El Jadida, University Chouaib Doukkali, P. O. Box 20, 24000 El Jadida, Morocco.

```
E-mail: mostafaelmoumni@gmail.com
```

Abstract. The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems

$$
-\operatorname{div}(a(x, u, \nabla u)+\Phi(u))+g(x, u, \nabla u)=f-\operatorname{div} F
$$

in a bounded open set Ω and $u=0$ on $\partial \Omega$, in the framework of OrliczSobolev spaces without any restriction on the M N-function of the Orlicz spaces, where $-\operatorname{div}(a(x, u, \nabla u))$ is a Leray-Lions operator defined from $W_{0}^{1} L_{M}(\Omega)$ into its dual, $\Phi \in C^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right)$. The function $g(x, u, \nabla u)$ is a non linear lower order term with natural growth with respect to $|\nabla u|$, satisfying the sign condition and the datum μ is assumed to belong to $L^{1}(\Omega)+W^{-1} E_{\bar{M}}(\Omega)$.

Keywords: Elliptic equation, Orlicz-Sobolev spaces, Renormalized solution.
2000 Mathematics subject classification: 35J15, 35J20.

1. Introduction

Let Ω be a bounded open set of $\mathbb{R}^{N}, N \geq 2$, and let M be an N-function. In the present paper we prove an existence result of a renormalized solution of the following strongly nonlinear elliptic problem

$$
\left\{\begin{array}{cl}
A(u)-\operatorname{div} \Phi(u)+g(x, u, \nabla u)=f-\operatorname{div} F & \text { in } \Omega \tag{1.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Here, $\Phi \in \mathcal{C}^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right)$, while the function $g(x, u, \nabla u)$ is a non linear lower order term with natural growth with respect to $|\nabla u|$ and satisfying the sign condition. The non everywhere defined nonlinear operator $A(u)=-\operatorname{div}(a(x, u, \nabla u))$ acts from its domain $D(A) \subset W_{0}^{1} L_{M}(\Omega)$ into $W^{-1} L_{\bar{M}}(\Omega)$. The function $a(x, u, \nabla u)$ is assumed to satisfy, among others, $a(x, u, \nabla u)$ nonstandard growth condition governed by the N-function M, and the source term $f \in L^{1}(\Omega)$ and $|F| \in E_{\bar{M}}(\Omega), \bar{M}$ stands for the conjugate of M.

We use here the notion of renormalized solutions, which was introduced by R.J. DiPerna and P.-L. Lions in their papers [16, 15] where the authors investigate the existence of solutions of the Boltzmann equation, by introducing the idea of renormalized solution. This concept of solution was then adapted to study (1.1) with $\Phi \equiv 0, g \equiv 0$ and $L^{1}(\Omega)$-data by F. Murat in [29, 28], by G. Dal Maso et al. in [13] with general measure data and then when f is a bounded Radon measure datum and g grows at most like $|\nabla u|^{p-1}$ by Beta et al. in $[9,10,11]$ with $\Phi \equiv 0$ and by Guibé and Mercaldo in [23, 24] when $\Phi(u)$ behaves at most like $|u|^{p-1}$. Renormalization idea was then used in [12] for variational equations and in $[30]$ when the source term is in $L^{1}(\Omega)$. Recall that to get both existence and uniqueness of a solution to problems with L^{1}-data, two notions of solution equivalent to the notion of renormalized solution were introduced, the first is the entropy solution by Bénilan et al. [4] and then the second is the SOLA by Dall'Aglio [14].

The authors in [5] have dealt with the equation (1.1) with $g=g(x, u)$ and $\mu \in W^{-1} E_{\bar{M}}(\Omega)$, under the restriction that the N-function M satisfies the $\Delta_{2^{-}}$ condition. This work was then extended in [2] for N-functions not satisfying necessarily the Δ_{2}-condition. Our goal here is to extend the result in [2] solving the problem (1.1) without any restriction on the N-function M. Recently, a large number of papers was devoted to the existence of solutions of (1.1). In the variational framework, that is $\mu \in W^{-1} E_{\bar{M}}(\Omega)$, an existence result has been proved in [3], Specific examples to which our results apply include the following:

$$
\begin{gathered}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+|u|^{s} u\right)+u|\nabla u|^{p}=\mu \text { in } \Omega, \\
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u \log ^{\beta}(1+|\nabla u|)+|u|^{s} u\right)=\mu \text { in } \Omega, \\
-\operatorname{div}\left(\frac{M(|\nabla u|) \nabla u}{|\nabla u|^{2}}+|u|^{s} u\right)+M(|\nabla u|)=\mu \text { in } \Omega,
\end{gathered}
$$

where $p>1, s>0, \beta>0$ and μ is a given Radon measure on Ω.
It is our purpose in this paper, to prove the existence of a renormalized solution for the problem (1.1) when the source term has the form $f-\operatorname{div} F$ with $f \in L^{1}(\Omega)$ and $|F| \in E_{\bar{M}}(\Omega)$, in the setting of Orlicz spaces without any restriction on the N-functions M. The approximate equations provide a $W_{0}^{1} L_{M}(\Omega)$ bound for the corresponding solution u_{n}. This allows us to obtain
a function u as a limit of the sequence u_{n}. Hence, appear two difficulties. The first one is how to give a sense to $\Phi(u)$, the second difficulty lies in the need of the convergence almost everywhere of the gradients of u_{n} in Ω. This is done by using suitable test functions built upon u_{n} which make licit the use of the divergence theorem for Orlicz functions. We note that the techniques we used in the proof are different from those used in $[2,5,12,17,25]$.

Let us briefly summarize the contents of the paper. The Section 2 is devoted to developing the necessary preliminaries, we introduce some technical lemmas. Section 3 contains the basic assumptions, the definition of renormalized solution and the main result, while the Section 4 is devoted to the proof of the main result.

2. Preliminaries

Let $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an N-function, i. e., M is continuous, increasing, convex, with $M(t)>0$ for $t>0, \frac{M(t)}{t} \rightarrow 0$ as $t \rightarrow 0$, and $\frac{M(t)}{t} \rightarrow+\infty$ as $t \rightarrow+\infty$. Equivalently, M admits the representation:

$$
M(t)=\int_{0}^{t} a(s) d s
$$

where $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is increasing, right continuous, with $a(0)=0, a(t)>0$ for $t>0$ and $a(t)$ tends to $+\infty$ as $t \rightarrow+\infty$.

The conjugate of M is also an N-function and it is defined by $\bar{M}=\int_{0}^{t} \bar{a}(s) d s$, where $\bar{a}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is the function $\bar{a}(t)=\sup \{s: a(s) \leq t\}$ (see [1]).

An N-function M is said to satisfy the Δ_{2}-condition if, for some k,

$$
\begin{equation*}
M(2 t) \leq k M(t) \quad \forall t \geq 0 \tag{2.1}
\end{equation*}
$$

when (2.1) holds only for $t \geq t_{0}>0$ then M is said to satisfy the Δ_{2}-condition near infinity. Moreover, we have the following Young's inequality

$$
s t \leq M(t)+\bar{M}(s), \quad \forall s, t \geq 0
$$

Given two N-functions, we write $P \ll Q$ to indicate P grows essentially less rapidly than Q; i. e. for each $\epsilon>0, \frac{P(t)}{Q(\epsilon t)} \rightarrow 0$ as $t \rightarrow+\infty$. This is the case if and only if

$$
\lim _{t \rightarrow \infty} \frac{Q^{-1}(t)}{P^{-1}(t)}=0
$$

Let Ω be an open subset of \mathbb{R}^{N}. The Orlicz class $k_{M}(\Omega)$ (resp. the Orlicz space $L_{M}(\Omega)$ is defined as the set of (equivalence classes of) real valued measurable functions u on Ω such that

$$
\left.\int_{\Omega} M(|u(x)|) d x<+\infty \quad \text { (resp. } \int_{\Omega} M\left(\frac{|u(x)|}{\lambda}\right) d x<+\infty \text { for some } \lambda>0\right)
$$

The set $L_{M}(\Omega)$ is a Banach space under the norm

$$
\|u\|_{M, \Omega}=\inf \left\{\lambda>0: \int_{\Omega} M\left(\frac{|u(x)|}{\lambda}\right) d x \leq 1\right\}
$$

and $k_{M}(\Omega)$ is a convex subset of $L_{M}(\Omega)$.
The closure in $L_{M}(\Omega)$ of the set of bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{M}(\Omega)$. The dual of $E_{M}(\Omega)$ can be identified with $L_{\bar{M}}(\Omega)$ by means of the pairing $\int_{\Omega} u v d x$, and the dual norm of $L_{\bar{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\bar{M}, \Omega}$. We now turn to the Orlicz-Sobolev space, $W^{1} L_{M}(\Omega)$ [resp. $\left.W^{1} E_{M}(\Omega)\right]$ is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_{M}(\Omega)$ [resp. $\left.E_{M}(\Omega)\right]$. It is a Banach space under the norm

$$
\|u\|_{1, M, \Omega}=\sum_{|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{M, \Omega}
$$

Thus, $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ can be identified with subspaces of product of $N+1$ copies of $L_{M}(\Omega)$. Denoting this product by $\prod L_{M}$, we will use the weak topologies $\sigma\left(\prod L_{M}, \prod E_{\bar{M}}\right)$ and $\sigma\left(\prod L_{M}, \prod L_{\bar{M}}\right)$.

The space $W_{0}^{1} E_{M}(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^{1} E_{M}(\Omega)$ and the space $W_{0}^{1} L_{M}(\Omega)$ as the $\sigma\left(\prod L_{M}, \prod E_{\bar{M}}\right)$ closure of $\mathcal{D}(\Omega)$ in $W^{1} L_{M}(\Omega)$. We say that u_{n} converges to u for the modular convergence in $W^{1} L_{M}(\Omega)$ if for some $\lambda>0, \int_{\Omega} M\left(\frac{D^{\alpha} u_{n}-D^{\alpha} u}{\lambda}\right) d x \rightarrow 0$ for all $|\alpha| \leq 1$. This implies convergence for $\sigma\left(\prod_{M}, \prod L_{\bar{M}}\right)$. If M satisfies the Δ_{2} condition on \mathbb{R}^{+}(near infinity only when Ω has finite measure), then modular convergence coincides with norm convergence.

Let $W^{-1} L_{\bar{M}}(\Omega)$ [resp. $W^{-1} E_{\bar{M}}(\Omega)$] denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\bar{M}}(\Omega)$ [resp. $\left.E_{\bar{M}}(\Omega)\right]$. It is a Banach space under the usual quotient norm (for more details see [1]).

A domain Ω has the segment property if for every $x \in \partial \Omega$ there exists an open set G_{x} and a nonzero vector y_{x} such that $x \in G_{x}$ and if $z \in \bar{\Omega} \cap G_{x}$, then $z+t y_{x} \in \Omega$ for all $0<t<1$. The following lemmas can be found in [6].

Lemma 2.1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let M be an N-function and let $u \in W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Then $F(u) \in W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial}{\partial x_{i}} F(u)= \begin{cases}F^{\prime}(u) \frac{\partial}{\partial x_{i}} u & \text { a.e. in }\{x \in \Omega: u(x) \notin D\}, \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \in D\} .\end{cases}
$$

Lemma 2.2. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. We suppose that the set of discontinuity points of F^{\prime} is finite. Let M be an N function, then the mapping $F: W^{1} L_{M}(\Omega) \rightarrow W^{1} L_{M}(\Omega)$ is sequentially continuous with respect to the weak* topology $\sigma\left(\prod L_{M}, \Pi E_{\bar{M}}\right)$.

Lemma 2.3. ([21]) Let Ω have the segment property. Then for each $\nu \in W_{0}^{1} L_{M}(\Omega)$, there exists a sequence $\nu_{n} \in \mathcal{D}(\Omega)$ such that ν_{n} converges to ν for the modular convergence in $W_{0}^{1} L_{M}(\Omega)$. Furthermore, if $\nu \in W_{0}^{1} L_{M}(\Omega) \cap L^{\infty}(\Omega)$, then

$$
\left\|\nu_{n}\right\|_{L^{\infty}(\Omega)} \leq(N+1)\|\nu\|_{L^{\infty}(\Omega)}
$$

We give now the following lemma which concerns operators of the Nemytskii type in Orlicz spaces (see [8]).

Lemma 2.4. Let Ω be an open subset of \mathbb{R}^{N} with finite measure. Let M, P, Q be N-functions such that $Q \ll P$, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that, for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$
|f(x, s)| \leq c(x)+k_{1} P^{-1} M\left(k_{2}|s|\right)
$$

where k_{1}, k_{2} are real constants and $c(x) \in E_{Q}(\Omega)$.
Then the Nemytskii operator N_{f} defined by $N_{f}(u)(x)=f(x, u(x))$ is strongly continuous from $\mathcal{P}\left(E_{M}(\Omega), \frac{1}{k_{2}}\right)=\left\{u \in L_{M}(\Omega): d\left(u, E_{M}(\Omega)\right)<\frac{1}{k_{2}}\right\}$ into $E_{Q}(\Omega)$.

We will also use the following technical lemma.
Lemma 2.5. ([26]) If $\left\{f_{n}\right\} \subset L^{1}(\Omega)$ with $f_{n} \rightarrow f \in L^{1}(\Omega)$ a.e. in $\Omega, f_{n}, f \geq 0$ a.e. in Ω and $\int_{\Omega} f_{n}(x) d x \rightarrow \int_{\Omega} f(x) d x$, then

$$
f_{n} \rightarrow f \text { in } L^{1}(\Omega)
$$

3. Structural Assumptions and Main Result

Throughout the paper Ω will be a bounded subset of $\mathbb{R}^{N}, N \geq 2$, satisfying the segment property. Let M and P be two N-functions such that $P \ll M$. Let A be the non everywhere defined operator defined from its domain $\mathcal{D}(\Omega) \subset W_{0}^{1} L_{M}(\Omega)$ into $W^{-1} L_{\bar{M}}(\Omega)$ given by

$$
A(u):=-\operatorname{div} a(\cdot, u, \nabla u)
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function. We assume that there exist a nonnegative function $c(x)$ in $E_{\bar{M}}(\Omega), \alpha>0$ and positive real constants k_{1}, k_{2}, k_{3} and k_{4}, such that for every $s \in \mathbb{R}, \xi \in \mathbb{R}^{N}, \xi^{\prime} \in \mathbb{R}^{N}\left(\xi \neq \xi^{\prime}\right)$ and for almost every $x \in \Omega$

$$
\begin{equation*}
|a(x, s, \xi)| \leq c(x)+k_{1} \bar{P}^{-1} M\left(k_{2}|s|\right)+k_{3} \bar{M}^{-1} M\left(k_{4}|\xi|\right), \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
\left(a(x, s, \xi)-a\left(x, s, \xi^{\prime}\right)\right)\left(\xi-\xi^{\prime}\right)>0 \tag{3.2}\\
a(x, s, \xi) \xi \geq \alpha M(|\xi|) \tag{3.3}
\end{gather*}
$$

Here, $g(x, s, \xi): \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function satisfying for almost every $x \in \Omega$ and for all $s \in \mathbb{R}, \xi \in \mathbb{R}^{N}$,

$$
\begin{gather*}
|g(x, s, \xi)| \leq b(|s|)(d(x)+M(|\xi|)) \tag{3.4}\\
g(x, s, \xi) s \geq 0 \tag{3.5}
\end{gather*}
$$

where $b: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a continuous and increasing function while d is a given nonnegative function in $L^{1}(\Omega)$.

The right-hand side of (1.1) and $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{N}$, are assumed to satisfy

$$
\begin{gather*}
f \in L^{1}(\Omega) \text { and }|F| \in E_{\bar{M}}(\Omega), \tag{3.6}\\
\Phi \in \mathcal{C}^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right) \tag{3.7}
\end{gather*}
$$

Our aim in this paper is to give a meaning to a possible solution of (1.1). In view of assumptions (3.1), (3.2), (3.3) and (3.6), the natural space in which one can seek for a solution u of problem (1.1) is the Orlicz-Sobolev space $W_{0}^{1} L_{M}(\Omega)$. But when u is only in $W_{0}^{1} L_{M}(\Omega)$ there is no reason for $\Phi(u)$ to be in $\left(L^{1}(\Omega)\right)^{N}$ since no growth hypothesis is assumed on the function Φ. Thus, the term div $(\Phi(u))$ may be ill-defined even as a distribution. This hindrance is bypassed by solving some weaker problem obtained formally trough a pointwise multiplication of equation (1.1) by $h(u)$ where h belongs to $C_{c}^{1}(\mathbb{R})$, the class of $C^{1}(\mathbb{R})$ functions with compact support.

Definition 3.1. A measurable function $u: \Omega \rightarrow \mathbb{R}$ is called a renormalized solution of (1.1) if $u \in W_{0}^{1} L_{M}(\Omega), a(x, u, \nabla u) \in\left(L_{\bar{M}}(\Omega)\right)^{N}$, $g(x, u, \nabla u) \in L^{1}(\Omega), g(x, u, \nabla u) u \in L^{1}(\Omega)$,

$$
\lim _{m \rightarrow+\infty} \int_{\{x \in \Omega: m \leq|u(x)| \leq m+1\}} a(x, u, \nabla u) \nabla u d x=0
$$

and

$$
\left\{\begin{array}{l}
-\operatorname{div} a(x, u, \nabla u) h(u)-\operatorname{div}(\Phi(u) h(u))+h^{\prime}(u) \Phi(u) \nabla u \tag{3.8}\\
+g(x, u, \nabla u) h(u)=f h(u)-\operatorname{div}(F h(u))+h^{\prime}(u) F \nabla u \text { in } \mathcal{D}^{\prime}(\Omega),
\end{array}\right.
$$

for every $h \in C_{c}^{1}(\mathbb{R})$.
Remark 3.2. Every term in the problem (3.8) is meaningful in the distributional sense. Indeed, for h in $C_{c}^{1}(\mathbb{R})$ and u in $W_{0}^{1} L_{M}(\Omega), h(u)$ belongs to $W^{1} L_{M}(\Omega)$ and for φ in $\mathcal{D}(\Omega)$ the function $\varphi h(u)$ belongs to $W_{0}^{1} L_{M}(\Omega)$. Since $(-\operatorname{div} a(x, u, \nabla u)) \in W^{-1} L_{\bar{M}}(\Omega)$, we also have

$$
\begin{aligned}
\langle-\operatorname{div} & a(x, u, \nabla u) h(u), \varphi\rangle_{\mathcal{D}^{\prime}(\Omega), \mathcal{D}(\Omega)} \\
& =\langle-\operatorname{div} a(x, u, \nabla u), \varphi h(u)\rangle_{W^{-1} L_{\bar{M}}(\Omega), W_{0}^{1} L_{M}(\Omega)} \\
\forall \varphi & \in \mathcal{D}(\Omega)
\end{aligned}
$$

Finally, since Φh and $\Phi h^{\prime} \in\left(C_{c}^{0}(\mathbb{R})\right)^{N}$, for any measurable function u we have $\Phi(u) h(u)$ and $\left.\Phi(u) h^{\prime}(u) \in\left(L^{\infty} \Omega\right)\right)^{N}$ and then $\operatorname{div}(\Phi(u) h(u)) \in W^{-1, \infty}(\Omega)$ and $\Phi(u) h^{\prime}(u) \in L_{M}(\Omega)$.

Our main result is the following
Theorem 3.3. Suppose that assumptions (3.1)-(3.7) are fulfilled. Then, problem (1.1) has at least one renormalized solution.

Remark 3.4. The condition (3.4) can be replaced by the weaker one

$$
|g(x, s, \xi)| \leq d(x)+b(|s|) M(|\xi|)
$$

with $b: \mathbb{R} \rightarrow \mathbb{R}^{+}$a continuous function belonging to $L^{1}(\mathbb{R})$ and $d(x) \in L^{1}(\Omega)$.
Actually the original equation (1.1) will be recovered whenever $h(u) \equiv 1$, but unfortunately this cannot happen in general strong additional requirements on u. Therefore, (3.8) is to be viewed as a weaker form of (1.1).

4. Proof of the Main Result

From now on, we will use the standard truncation function $T_{k}, k>0$, defined for all $s \in \mathbb{R}$ by $T_{k}(s)=\max \{-k, \min \{k, s\}\}$.

Step 1: Approximate problems. Let f_{n} be a sequence of $L^{\infty}(\Omega)$ functions that converge strongly to f in $L^{1}(\Omega)$. For $n \in \mathbb{N}, n \geq 1$, let us consider the following sequence of approximate equations
$-\operatorname{div} a\left(x, u_{n}, \nabla u_{n}\right)+\operatorname{div} \Phi_{n}\left(u_{n}\right)+g_{n}\left(x, u_{n}, \nabla u_{n}\right)=f_{n}-\operatorname{div} F \operatorname{in} \mathcal{D}^{\prime}(\Omega)$,
where we have set $\Phi_{n}(s)=\Phi\left(T_{n}(s)\right)$ and $g_{n}(x, s, \xi)=\frac{g(x, s, \xi)}{1+\frac{1}{n}|g(x, s, \xi)|}$. For fixed $n>0$, it's obvious to observe that

$$
g_{n}(x, s, \xi) s \geq 0, \quad\left|g_{n}(x, s, \xi)\right| \leq|g(x, s, \xi)| \text { and }\left|g_{n}(x, s, \xi)\right| \leq n
$$

Moreover, since Φ is continuous one has $\left|\Phi_{n}(t)\right| \leq \max _{|t| \leq n}|\Phi(t)|$. Therefore, applying both Proposition 1, Proposition 5 and Remark 2 of [22] one can deduces that there exists at least one solution u_{n} of the approximate Dirichlet problem (4.1) in the sense

$$
\left\{\begin{array}{l}
u_{n} \in W_{0}^{1} L_{M}(\Omega), a\left(x, u_{n}, \nabla u_{n}\right) \in\left(L_{\bar{M}}(\Omega)\right)^{N} \text { and } \tag{4.2}\\
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla v d x+\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla v d x \\
+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v d x=\left\langle f_{n}, v\right\rangle+\int_{\Omega} F \nabla v d x, \text { for every } v \in W_{0}^{1} L_{M}(\Omega)
\end{array}\right.
$$

Step 2: Estimation in $W_{0}^{1} L_{M}(\Omega)$. Taking u_{n} as function test in problem (4.2), we obtain

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x+\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla u_{n} d x \tag{4.3}\\
& +\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x=\left\langle f_{n}, u_{n}\right\rangle+\int_{\Omega} F \nabla u_{n} d x
\end{align*}
$$

Define $\widetilde{\Phi}_{n} \in\left(C^{1}(\mathbb{R})\right)^{N}$ as $\widetilde{\Phi}_{n}(t)=\int_{0}^{t} \Phi_{n}(\tau) d \tau$. Then formally
$\operatorname{div}\left(\widetilde{\Phi}_{n}\left(u_{n}\right)\right)=\Phi_{n}\left(u_{n}\right) \nabla u_{n}, u_{n}=0$ on $\partial \Omega, \widetilde{\Phi}_{n}(0)=0$ and by the Divergence theorem

$$
\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla u_{n} d x=\int_{\Omega} \operatorname{div}\left(\widetilde{\Phi}_{n}\left(u_{n}\right)\right) d x=\int_{\partial \Omega} \widetilde{\Phi}_{n}\left(u_{n}\right) \vec{n} d s=0
$$

where \vec{n} is the outward pointing unit normal field of the boundary $\partial \Omega(d s$ may be used as a shorthand for $\vec{n} d s$). Thus, by virtue of (3.5) and Young's inequality, we get

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq C_{1}+\frac{\alpha}{2} \int_{\Omega} M\left(\left|\nabla u_{n}\right|\right) d x \tag{4.4}
\end{equation*}
$$

which, together with (3.3) give

$$
\begin{equation*}
\int_{\Omega} M\left(\left|\nabla u_{n}\right|\right) d x \leq C_{2} \tag{4.5}
\end{equation*}
$$

Moreover, we also have

$$
\begin{equation*}
\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x \leq C_{3} . \tag{4.6}
\end{equation*}
$$

As a consequence of (4.5) there exist a subsequence of $\left\{u_{n}\right\}_{n}$, still indexed by n, and a function $u \in W_{0}^{1} L_{M}(\Omega)$ such that

$$
\begin{gather*}
u_{n} \rightharpoonup u \text { weakly in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}(\Omega), \Pi E_{\bar{M}}(\Omega)\right), \tag{4.7}\\
u_{n} \rightarrow u \text { strongly in } E_{M}(\Omega) \text { and a. e. in } \Omega .
\end{gather*}
$$

Step 3: Boundedness of $\left(a\left(x, u_{n}, \nabla u_{n}\right)\right)_{n}$ in $\left(L_{\bar{M}}(\Omega)\right)^{N}$. Let $w \in\left(E_{M}(\Omega)\right)^{N}$ with $\|w\|_{M} \leq 1$. Thanks to (3.2), we can write

$$
\left(a\left(x, u_{n}, \nabla u_{n}\right)-\left(a\left(x, u_{n}, \frac{w}{k_{4}}\right)\right)\left(\nabla u_{n}-\frac{w}{k_{4}}\right) \geq 0\right.
$$

which implies

$$
\begin{aligned}
\frac{1}{k_{4}} \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) w d x \leq & \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \\
& +\int_{\Omega} a\left(x, u_{n}, \frac{w}{k_{4}}\right)\left(\frac{w}{k_{4}}-\nabla u_{n}\right) d x
\end{aligned}
$$

Thanks to (4.4) and (4.5), one has

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq C_{5}
$$

Define $\lambda=1+k_{1}+k_{3}$. By the growth condition (3.1) and Young's inequality, one can write

$$
\begin{aligned}
& \left|\int_{\Omega} a\left(x, u_{n}, \frac{w}{k_{4}}\right)\left(\frac{w}{k_{4}}-\nabla u_{n}\right) d x\right| \\
& \leq\left(1+\frac{1}{k_{4}}\right)\left(\int_{\Omega} \bar{M}(c(x)) d x+k_{1} \int_{\Omega} \bar{M} \bar{P}^{-1} M\left(k_{2}\left|u_{n}\right|\right) d x\right. \\
& \left.\quad+k_{3} \int_{\Omega} M(|w|) d x\right)+\frac{\lambda}{k_{4}} \int_{\Omega} M(|w|) d x+\lambda \int_{\Omega} M\left(\left|\nabla u_{n}\right|\right) d x .
\end{aligned}
$$

By virtue of [18] and Lemma 4.14 of [20], there exists an N-function Q such that $M \ll Q$ and the space $W_{0}^{1} L_{M}(\Omega)$ is continuously embedded into $L_{Q}(\Omega)$. Thus, by (4.5) there exists a constant $c_{0}>0$, not depending on n, satisfying $\left\|u_{n}\right\|_{Q} \leq c_{0}$. Since $M \ll Q$, we can write $M\left(k_{2} t\right) \leq Q\left(\frac{t}{c_{0}}\right)$, for $t>0$ large enough. As $P \ll M$, we can find a constant c_{1}, not depending on n, such that $\int_{\Omega} \bar{M} \bar{P}^{-1} M\left(k_{2}\left|u_{n}\right|\right) d x \leq \int_{\Omega} Q\left(\frac{\left|u_{n}\right|}{c_{0}}\right)+c_{1}$. Hence, we conclude that the quantity $\mid \int_{\Omega} a\left(x, u_{n}, \nabla u_{n} w d x \mid\right.$ is bounded from above for all $w \in\left(E_{M}(\Omega)\right)^{N}$ with $\|w\|_{M} \leq 1$. Using the Orlicz norm we deduce that

$$
\begin{equation*}
\left(a\left(x, u_{n}, \nabla u_{n}\right)\right)_{n} \text { is bounded in }\left(L_{\bar{M}}(\Omega)\right)^{N} . \tag{4.8}
\end{equation*}
$$

Step 4: Renormalization identity for the approximate solutions. For any $m \geq 1$, define $\theta_{m}(r)=T_{m+1}(r)-T_{m}(r)$. Observe that by [19, Lemma2] one has $\theta_{m}\left(u_{n}\right) \in W_{0}^{1} L_{M}(\Omega)$. The use of $\theta_{m}\left(u_{n}\right)$ as test function in (4.2) yields
$\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq\left\langle f_{n}, \theta_{m}\left(u_{n}\right)\right\rangle+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} F \nabla u_{n} d x$,
By Hölder's inequality and 4.5 we have

$$
\begin{gathered}
\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq\left\langle f_{n}, \theta_{m}\left(u_{n}\right)\right\rangle \\
+C_{6} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x .
\end{gathered}
$$

It's not hard to see that

$$
\left\|\nabla \theta_{m}\left(u_{n}\right)\right\|_{M} \leq\left\|\nabla u_{n}\right\|_{M}
$$

So that by (4.5) and (4.7) one can deduce that

$$
\theta_{m}\left(u_{n}\right) \rightharpoonup \theta_{m}(u) \text { weakly in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}(\Omega), \Pi E_{\bar{M}}(\Omega)\right)
$$

Note that as m goes to $\infty, \theta_{m}(u) \rightharpoonup 0$ weakly in $W_{0}^{1} L_{M}(\Omega)$ for $\sigma\left(\Pi L_{M}(\Omega), \Pi E_{\bar{M}}(\Omega)\right)$, and since f_{n} converges strongly in $L^{1}(\Omega)$, by Lebesgue's theorem we have

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left\langle f_{n}, \theta_{m}\left(u_{n}\right)\right\rangle=0
$$

By (3.3) we finally have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x=0 \tag{4.9}
\end{equation*}
$$

Step 5: Almost everywhere convergence of the gradients. Define $\phi(s)=s e^{\lambda s^{2}}$ with $\lambda=\left(\frac{b(k)}{2 \alpha}\right)^{2}$. One can easily verify that for all $s \in \mathbb{R}$

$$
\begin{equation*}
\phi^{\prime}(s)-\frac{b(k)}{\alpha}|\phi(s)| \geq \frac{1}{2} . \tag{4.10}
\end{equation*}
$$

For $m \geq k$, we define the function ψ_{m} by

$$
\left\{\begin{array}{lll}
\psi_{m}(s)=1 & \text { if } & |s| \leq m \\
\psi_{m}(s)=m+1-|s| & \text { if } & m \leq|s| \leq m+1 \\
\psi_{m}(s)=0 & \text { if } & |s| \geq m+1
\end{array}\right.
$$

By virtue of [21, Theorem 4] there exists a sequence $\left\{v_{j}\right\}_{j} \subset D(\Omega)$ such that $v_{j} \rightarrow u$ in $W_{0}^{1} L_{M}(\Omega)$ for the modular convergence and a.e. in Ω. Let us define the following functions $\theta_{n}^{j}=T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right), \theta^{j}=T_{k}(u)-T_{k}\left(v_{j}\right)$ and $z_{n, m}^{j}=\phi\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right)$. Using $z_{n, m}^{j} \in W_{0}^{1} L_{M}(\Omega)$ as test function in (4.2) we get

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla z_{n, m}^{j} d x+\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla \phi\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) \psi_{m}\left(u_{n}\right) d x \\
& +\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \Phi_{n}\left(u_{n}\right) \nabla u_{n} \psi_{m}^{\prime}\left(u_{n}\right) \phi\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) d x \\
& \quad+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} d x=\int_{\Omega} f_{n} z_{n, m}^{j} d x+\int_{\Omega} F \nabla z_{n, m}^{j} d x . \tag{4.11}
\end{align*}
$$

From now on we denote by $\epsilon_{i}(n, j), i=0,1,2, \ldots$, various sequences of real numbers which tend to zero, when n and $j \rightarrow+\infty$, i. e.

$$
\lim _{j \rightarrow+\infty} \lim _{n \rightarrow+\infty} \epsilon_{i}(n, j)=0
$$

In view of (4.7), we have $z_{n, m}^{j} \rightharpoonup \phi\left(\theta^{j}\right) \psi_{m}(u)$ weakly in $L^{\infty}(\Omega)$ for $\sigma^{*}\left(L^{\infty}, L^{1}\right)$ as $n \rightarrow+\infty$, which yields

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} f_{n} z_{n, m}^{j} d x=\int_{\Omega} f \phi\left(\theta^{j}\right) \psi_{m}(u) d x
$$

and since $\phi\left(\theta^{j}\right) \rightharpoonup 0$ weakly in $L^{\infty}(\Omega)$ for $\sigma\left(L^{\infty}, L^{1}\right)$ as $j \rightarrow+\infty$, we have

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} f \phi\left(\theta^{j}\right) \psi_{m}(u) d x=0
$$

Thus, we write

$$
\int_{\Omega} f_{n} z_{n, m}^{j} d x=\epsilon_{0}(n, j)
$$

Thanks to (4.5) and (4.7), we have as $n \rightarrow+\infty$,

$$
z_{n, m}^{j} \rightharpoonup \phi\left(\theta^{j}\right) \psi_{m}(u) \text { in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}(\Omega), \Pi E_{\bar{M}}(\Omega)\right),
$$

which implies that

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} F \nabla z_{n, m}^{j} d x=\int_{\Omega} F \nabla \theta^{j} \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x+\int_{\Omega} F \nabla u \phi\left(\theta^{j}\right) \psi_{m}^{\prime}(u) d x
$$

On the one hand, by Lebesgue's theorem we get

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} F \nabla u \phi\left(\theta^{j}\right) \psi_{m}^{\prime}(u) d x=0
$$

on the other hand, we write

$$
\begin{aligned}
\int_{\Omega} F \nabla \theta^{j} \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x= & \int_{\Omega} F \nabla T_{k}(u) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x \\
& -\int_{\Omega} F \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x
\end{aligned}
$$

so that, by Lebesgue's theorem one has

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} F \nabla T_{k}(u) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x=\int_{\Omega} F \nabla T_{k}(u) \psi_{m}(u) d x
$$

Let $\lambda>0$ such that $M\left(\frac{\left|\nabla v_{j}-\nabla u\right|}{\lambda}\right) \rightarrow 0$ strongly in $L^{1}(\Omega)$ as $j \rightarrow+\infty$ and $M\left(\frac{|\nabla u|}{\lambda}\right) \in L^{1}(\Omega)$, the convexity of the N-function M allows us to have

$$
\begin{aligned}
& M\left(\frac{\left|\nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u)-\nabla T_{k}(u) \psi_{m}(u)\right|}{4 \lambda \phi^{\prime}(2 k)}\right) \\
& \quad=\frac{1}{4} M\left(\frac{\left|\nabla v_{j}-\nabla u\right|}{\lambda}\right)+\frac{1}{4}\left(1+\frac{1}{\phi^{\prime}(2 k)}\right) M\left(\frac{|\nabla u|}{\lambda}\right) .
\end{aligned}
$$

Then, by using the modular convergence of $\left\{\nabla v_{j}\right\}$ in $\left(L_{M}(\Omega)\right)^{N}$ and Vitali's theorem, we obtain

$$
\nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) \rightarrow \nabla T_{k}(u) \psi_{m}(u) \text { in }\left(L_{M}(\Omega)\right)^{N}, \text { as } j \text { tends to }+\infty,
$$

for the modular convergence, and then

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} F \nabla T_{k}(u) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x=\int_{\Omega} F \nabla T_{k}(u) \psi_{m}(u) d x
$$

We have proved that

$$
\int_{\Omega} F \nabla z_{n, m}^{j} d x=\epsilon_{1}(n, j) .
$$

It's easy to see that by the modular convergence of the sequence $\left\{v_{j}\right\}_{j}$, one has

$$
\lim _{j \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \Phi_{n}\left(u_{n}\right) \nabla u_{n} \psi_{m}^{\prime}\left(u_{n}\right) \phi\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) d x=0
$$

while for the third term in the left-hand side of (4.11) we can write

$$
\begin{aligned}
& \int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla \phi\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) \psi_{m}\left(u_{n}\right) d x \\
& =\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla T_{k}\left(u_{n}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x-\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x .
\end{aligned}
$$

Firstly, we have

$$
\lim _{j \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla T_{k}\left(u_{n}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x=0
$$

In view of (4.7), one has

$$
\Phi_{n}\left(u_{n}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) \rightarrow \Phi(u) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u),
$$

almost everywhere in Ω as n tends to $+\infty$. Furthermore, we can check that

$$
\left\|\Phi_{n}\left(u_{n}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right)\right\|_{\bar{M}} \leq \bar{M}\left(c_{m} \phi^{\prime}(2 k)\right)|\Omega|+1
$$

where $c_{m}=\max _{|t| \leq m+1} \Phi(t)$. Applying [27, Theorem 14.6] we get

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x=\int_{\Omega} \Phi(u) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \psi_{m}(u) d x
$$

Using the modular convergence of the sequence $\left\{v_{j}\right\}_{j}$, we obtain

$$
\lim _{j \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x=\int_{\Omega} \Phi(u) \nabla T_{k}(u) \psi_{m}(u) d x
$$

Then, using again the Divergence theorem we get

$$
\int_{\Omega} \Phi(u) \nabla T_{k}(u) \psi_{m}(u) d x=0
$$

Therefore, we write

$$
\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla \phi\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) \psi_{m}\left(u_{n}\right) d x=\epsilon_{2}(n, j)
$$

Since $g_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} \geq 0$ on the set $\left\{\left|u_{n}\right|>k\right\}$ and $\psi_{m}\left(u_{n}\right)=1$ on the set $\left\{\left|u_{n}\right| \leq k\right\}$, from (4.11) we obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla z_{n, m}^{j} d x+\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x \leq \epsilon_{3}(n, j) . \tag{4.12}
\end{equation*}
$$

We now evaluate the first term of the left-hand side of (4.12) by writing

$$
\begin{aligned}
\int_{\Omega} a(x, & \left.u_{n}, \nabla u_{n}\right) \nabla z_{n, m}^{j} d x \\
= & \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \psi_{m}^{\prime}\left(u_{n}\right) d x \\
= & \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \psi_{m}^{\prime}\left(u_{n}\right) d x
\end{aligned}
$$

and then

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla z_{n, m}^{j} d x \\
& =\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \left.\quad+\int_{\Omega} a\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi_{n}^{\prime}\left(\theta_{n}^{j}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \quad \\
& \quad-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \quad-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x \\
& \quad+\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \psi_{m}^{\prime}\left(u_{n}\right) d x \tag{4.13}
\end{align*}
$$

where by $\chi_{j}^{s}, s>0$, we denote the characteristic function of the subset

$$
\Omega_{j}^{s}=\left\{x \in \Omega:\left|\nabla T_{k}\left(v_{j}\right)\right| \leq s\right\}
$$

For fixed m and s, we will pass to the limit in n and then in j in the second, third, fourth and fifth terms in the right side of (4.13). Starting with the second term, we have

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \rightarrow \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta^{j}\right) d x
\end{aligned}
$$

as $n \rightarrow+\infty$. Since by lemma (2.4) one has

$$
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rightarrow a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta^{j}\right)
$$

strongly in $\left(E_{\bar{M}}(\Omega)\right)^{N}$ as $n \rightarrow \infty$, while by (4.5)

$$
\nabla T_{k}\left(u_{n}\right) \rightharpoonup \nabla T_{k}(u)
$$

weakly in $\left(L_{M}(\Omega)\right)^{N}$. Let χ^{s} denote the characteristic function of the subset

$$
\Omega^{s}=\left\{x \in \Omega:\left|\nabla T_{k}(u)\right| \leq s\right\} .
$$

As $\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} \rightarrow \nabla T_{k}(u) \chi^{s}$ strongly in $\left(E_{M}(\Omega)\right)^{N}$ as $j \rightarrow+\infty$, one has

$$
\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta^{j}\right) d x \rightarrow 0
$$

as $j \rightarrow \infty$. Then

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x=\epsilon_{4}(n, j) \tag{4.14}
\end{equation*}
$$

We now estimate the third term of (4.13). It's easy to see that by (3.3), $a(x, s, 0)=0$ for almost everywhere $x \in \Omega$ and for all $s \in \mathbb{R}$. Thus, from (4.8) we have that $\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ for all $k \geq 0$.

Therefore, there exist a subsequence still indexed by n and a function l_{k} in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ such that

$$
\begin{equation*}
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup l_{k} \text { weakly in }\left(L_{\bar{M}}(\Omega)\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right) \tag{4.15}
\end{equation*}
$$

Then, since $\nabla T_{k}\left(v_{j}\right) \chi_{\Omega \backslash \Omega_{j}^{s}} \in\left(E_{\bar{M}}(\Omega)\right)^{N}$, we obtain

$$
\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \rightarrow \int_{\Omega \backslash \Omega_{j}^{s}} l_{k} \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) d x
$$

as $n \rightarrow+\infty$. The modular convergence of $\left\{v_{j}\right\}$ allows us to get

$$
-\int_{\Omega \backslash \Omega_{j}^{s}} l_{k} \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) d x \rightarrow-\int_{\Omega \backslash \Omega^{s}} l_{k} \nabla T_{k}(u) d x
$$

as $j \rightarrow+\infty$. This, proves

$$
\begin{equation*}
-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x=-\int_{\Omega \backslash \Omega^{s}} l_{k} \nabla T_{k}(u) d x+\epsilon_{5}(n, j) \tag{4.16}
\end{equation*}
$$

As regards the fourth term, observe that $\psi_{m}\left(u_{n}\right)=0$ on the subset $\left\{\left|u_{n}\right| \geq m+1\right\}$, so we have

$$
\begin{aligned}
&\left.-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right)\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x= \\
&-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x .
\end{aligned}
$$

Since

$$
\begin{gathered}
-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x= \\
-\int_{\{|u|>k\}} l_{m+1} \nabla T_{k}(u) \psi_{m}(u) d x+\epsilon_{5}(n, j),
\end{gathered}
$$

observing that $\nabla T_{k}(u)=0$ on the subset $\{|u|>k\}$, one has

$$
\begin{equation*}
-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \psi_{m}\left(u_{n}\right) d x=\epsilon_{6}(n, j) \tag{4.17}
\end{equation*}
$$

For the last term of (4.13), we have

$$
\begin{aligned}
& \left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \psi_{m}^{\prime}\left(u_{n}\right) d x\right| \\
& \quad=\left|\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \psi_{m}^{\prime}\left(u_{n}\right) d x\right| \\
& \quad \leq \phi(2 k) \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x .
\end{aligned}
$$

To estimate the last term of the previous inequality, we use $\left(T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) \in W_{0}^{1} L_{M}(\Omega)\right)$ as test function in (4.2), to get

$$
\begin{aligned}
& \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \Phi_{n}\left(u_{n}\right) \nabla u_{n} d x \\
& +\int_{\left\{\left|u_{n}\right| \geq m\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) d x=\left\langle f_{n}, T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)\right\rangle \\
& +\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} F \nabla u_{n} d x .
\end{aligned}
$$

By Divergence theorem, we have

$$
\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \Phi_{n}\left(u_{n}\right) \nabla u_{n} d x=0
$$

Using the fact that $g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) \geq 0$ on the subset $\left\{\left|u_{n}\right| \geq m\right\}$ and Young's inequality, we get

$$
\begin{aligned}
& \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \\
\leq & \left\langle f_{n}, T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)\right\rangle+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \psi_{m}^{\prime}\left(u_{n}\right) d x\right| \\
& \quad \leq 2 \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) . \tag{4.18}
\end{align*}
$$

From (4.14), (4.16), (4.17) and (4.18) we obtain

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla z_{n, m}^{j} d x \\
& \geq \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \quad\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \quad-\alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& \quad-\int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x+\epsilon_{7}(n, j) . \tag{4.19}
\end{align*}
$$

Now, we turn to second term in the left-hand side of (4.12). We have

$$
\begin{aligned}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& =\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& \leq b(k) \int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x+b(k) \int_{\Omega} d(x)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& \leq \frac{b(k)}{\alpha} \int_{\Omega} a_{n}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x+\epsilon_{8}(n, j) .
\end{aligned}
$$

Then

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& \leq \frac{b(k)}{\alpha} \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \quad\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& \quad+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& \quad+\frac{b(k)}{\alpha} \int_{\Omega} a_{n}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\left|\phi\left(\theta_{n}^{j}\right)\right| d x+\epsilon_{9}(n, j) \tag{4.20}
\end{align*}
$$

We proceed as above to get

$$
\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x=\epsilon_{9}(n, j)
$$

and

$$
\frac{b(k)}{\alpha} \int_{\Omega} a_{n}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\left|\phi\left(\theta_{n}^{j}\right)\right| d x=\epsilon_{10}(n, j)
$$

Hence, we have

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& \leq \frac{b(k)}{\alpha} \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \tag{4.21}\\
& \quad\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x+\epsilon_{11}(n, j)
\end{align*}
$$

Combining (4.12), (4.19) and (4.21), we get

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \\
& \quad\left(\phi^{\prime}\left(\theta_{n}^{j}\right)-\frac{b(k)}{\alpha}\left|\phi\left(\theta_{n}^{j}\right)\right|\right) d x \\
& \leq \int_{\Omega \backslash \Omega^{s}} l_{k} \nabla T_{k}(u) d x+\alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& \quad+\epsilon_{12}(n, j) .
\end{aligned}
$$

By (4.10), we have

$$
\begin{align*}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& \leq 2 \int_{\Omega \backslash \Omega^{s}} l_{k} \nabla T_{k}(u) d x+4 \alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& +\epsilon_{12}(n, j) \tag{4.22}
\end{align*}
$$

On the other hand we can write

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& \quad=\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& \quad+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}-\nabla T_{k}(u) \chi^{s}\right) d x \\
& \quad-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& \quad+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x
\end{aligned}
$$

We shall pass to the limit in n and then in j in the last three terms of the right hand side of the above equality. In a similar way as done in (4.13) and (4.20), we obtain

$$
\begin{align*}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}-\nabla T_{k}(u) \chi^{s}\right) d x=\epsilon_{13}(n, j), \\
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x=\epsilon_{14}(n, j), \tag{4.23}\\
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& =\epsilon_{15}(n, j) .
\end{align*}
$$

So that

$$
\begin{align*}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& =\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& +\epsilon_{16}(n, j) . \tag{4.24}
\end{align*}
$$

Let $r \leq s$. Using (3.2), (4.22) and (4.24) we can write

$$
\begin{aligned}
& 0 \leq \int_{\Omega^{r}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
& \leq \int_{\Omega^{s}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
& =\int_{\Omega^{s}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& \leq \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& =\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& +\epsilon_{15}(n, j) \\
& \leq 2 \int_{\Omega \backslash \Omega^{s}} l_{k} \nabla T_{k}(u) d x+2 \alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& +\epsilon_{17}(n, j) .
\end{aligned}
$$

By passing to the superior limit over n and then over j

$$
\begin{aligned}
0 & \leq \limsup _{n \rightarrow+\infty} \int_{\Omega^{r}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
& \leq 2 \int_{\Omega \backslash \Omega^{s}} l_{k} \nabla T_{k}(u) d x+4 \alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}|f| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) .
\end{aligned}
$$

Letting $s \rightarrow+\infty$ and then $m \rightarrow+\infty$, taking into account that $l_{k} \nabla T_{k}(u) \in$ $L^{1}(\Omega), f \in L^{1}(\Omega),|F| \in\left(E_{\bar{M}}(\Omega)\right)^{N},\left|\Omega \backslash \Omega^{s}\right| \rightarrow 0$, and $|\{m \leq|u| \leq m+1\}| \rightarrow 0$, one has

$$
\begin{equation*}
\int_{\Omega^{r}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \tag{4.25}
\end{equation*}
$$

tends to 0 as $n \rightarrow+\infty$. As in [20], we deduce that there exists a subsequence of $\left\{u_{n}\right\}$ still indexed by n such that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a. e. in } \Omega . \tag{4.26}
\end{equation*}
$$

Therefore, having in mind (4.8) and (4.7), we can apply [27, Theorem 14.6] to get

$$
a(x, u, \nabla u) \in\left(L_{\bar{M}}(\Omega)\right)^{N}
$$

and

$$
\begin{equation*}
\left.a\left(x, u_{n}, \nabla u_{n}\right)\right) \rightharpoonup a(x, u, \nabla u) \text { weakly in }\left(L_{\bar{M}}(\Omega)\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right) \tag{4.27}
\end{equation*}
$$

Step 6: Modular convergence of the truncations. Going back to equation (4.22), we can write

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
& \quad+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& \quad+2 \alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& \quad+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x+\epsilon_{12}(n, j) .
\end{aligned}
$$

By (4.23) we get

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
& \quad+2 \alpha \phi(2 k)\left(\int_{\left\{m \leq\left|u_{n}\right|\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& \quad+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x+\epsilon_{18}(n, j) .
\end{aligned}
$$

We now pass to the superior limit over n in both sides of this inequality using (4.27), to obtain

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
& \quad+2 \alpha \phi(2 k)\left(\int_{\{m \leq|u|\}}|f| d x+\int_{\{m \leq|u| \leq m+1\}} \bar{M}(|F|) d x\right) \\
& \quad+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x .
\end{aligned}
$$

We then pass to the limit in j to get

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi^{s} d x \\
& \quad+2 \alpha \phi(2 k)\left(\int_{\{m \leq|u|\}}|f| d x+\int_{\{m \leq|u| \leq m+1\}} \bar{M}(|F|) d x\right) \\
& \quad+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x .
\end{aligned}
$$

Letting s and then $m \rightarrow+\infty$, one has

$$
\limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x
$$

On the other hand, by (3.3), (4.5), (4.26) and Fatou's lemma, we have

$$
\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x
$$

It follows that

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x=\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x
$$

By Lemma 2.5 we conclude that for every $k>0$

$$
\begin{equation*}
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) \rightarrow a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) \tag{4.28}
\end{equation*}
$$

strongly in $L^{1}(\Omega)$. The convexity of the N-function M and (3.3) allow us to have

$$
\begin{aligned}
& M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2}\right) \\
& \leq \frac{1}{2 \alpha} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)+\frac{1}{2 \alpha} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) .
\end{aligned}
$$

From Vitali's theorem we deduce

$$
\lim _{|E| \rightarrow 0} \sup _{n} \int_{E} M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2}\right) d x=0
$$

Thus, for every $k>0$

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { in } W_{0}^{1} L_{M}(\Omega)
$$

for the modular convergence.

Step 7: Compactness of the nonlinearities. We need to prove that

$$
\begin{equation*}
g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u) \text { strongly in } L^{1}(\Omega) \tag{4.29}
\end{equation*}
$$

By virtue of (4.7) and (4.26) one has

$$
\begin{equation*}
g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u) \quad \text { a. e. in } \Omega \tag{4.30}
\end{equation*}
$$

Let E be measurable subset of Ω and let $m>0$. Using (3.3) and (3.4) we can write

$$
\begin{aligned}
& \int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \\
& =\int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x+\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \\
& \leq b(m) \int_{E} d(x) d x+b(m) \int_{E} a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}\left(u_{n}\right) d x \\
& \quad+\frac{1}{m} \int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x
\end{aligned}
$$

From (3.5) and (4.6), we deduce that

$$
0 \leq \int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x \leq C_{3} .
$$

So

$$
0 \leq \frac{1}{m} \int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x \leq \frac{C_{3}}{m}
$$

Then

$$
\lim _{m \rightarrow+\infty} \frac{1}{m} \int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x=0
$$

Thanks to (4.28) the sequence $\left\{a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}\left(u_{n}\right)\right\}_{n}$ is equiintegrable. This fact allows us to get

$$
\lim _{|E| \rightarrow 0} \sup _{n} \int_{E} a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \cdot \nabla T_{m}\left(u_{n}\right) d x=0
$$

This shows that $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$ is equi-integrable. Thus, Vitali's theorem implies that $g(x, u, \nabla u) \in L^{1}(\Omega)$ and

$$
g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u) \text { strongly in } L^{1}(\Omega)
$$

Step 8: Renormalization identity for the solutions. In this step we prove that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \int_{\{m \leq|u| \leq m+1\}} a(x, u, \nabla u) \nabla u d x=0 . \tag{4.31}
\end{equation*}
$$

Indeed, for any $m \geq 0$ we can write

$$
\begin{array}{r}
\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \\
=\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right)\left(\nabla T_{m+1}\left(u_{n}\right)-\nabla T_{m}\left(u_{n}\right)\right) d x \\
=\int_{\Omega} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \nabla T_{m+1}\left(u_{n}\right) d x \\
\quad-\int_{\Omega} a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}\left(u_{n}\right) d x .
\end{array}
$$

In view of (4.28), we can pass to the limit as n tends to $+\infty$ for fixed $m \geq 0$

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \\
&= \int_{\Omega} a\left(x, T_{m+1}(u), \nabla T_{m+1}(u)\right) \nabla T_{m+1}(u) d x \\
&-\int_{\Omega} a\left(x, T_{m}(u), \nabla T_{m}(u)\right) \nabla T_{m}(u) d x \\
&= \int_{\Omega} a(x, u, \nabla u)\left(\nabla T_{m+1}(u)-\nabla T_{m}(u)\right) d x \\
&= \int_{\{m \leq|u| \leq m+1\}} a(x, u, \nabla u) \nabla u d x .
\end{aligned}
$$

Having in mind (4.9), we can pass to the limit as m tends to $+\infty$ to obtain (4.31).

Step 9: Passing to the limit. Thanks to (4.28) and Lemma (2.5), we obtain

$$
\begin{equation*}
a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \rightarrow a(x, u, \nabla u) \nabla u \text { strongly in } L^{1}(\Omega) . \tag{4.32}
\end{equation*}
$$

Let $h \in \mathcal{C}_{c}^{1}(\mathbb{R})$ and $\varphi \in \mathcal{D}(\Omega)$. Inserting $h\left(u_{n}\right) \varphi$ as test function in (4.2), we get

$$
\begin{gather*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} h^{\prime}\left(u_{n}\right) \varphi d x+\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla \varphi h\left(u_{n}\right) d x \\
+\int_{\Omega} \Phi_{n}\left(u_{n}\right) \nabla\left(h\left(u_{n}\right) \varphi\right) d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) h\left(u_{n}\right) \varphi d x \tag{4.33}\\
=\left\langle f_{n}, h\left(u_{n}\right) \varphi\right\rangle+\int_{\Omega} F \nabla\left(h\left(u_{n}\right) \varphi\right) d x
\end{gather*}
$$

We shall pass to the limit as $n \rightarrow+\infty$ in each term of the equality (4.33). Since h and h^{\prime} have compact support on \mathbb{R}, there exists a real number $\nu>0$, such that $\operatorname{supp} h \subset[-\nu, \nu]$ and $\operatorname{supp} h^{\prime} \subset[-\nu, \nu]$. For $n>\nu$, we can write

$$
\Phi_{n}(t) h(t)=\Phi\left(T_{\nu}(t)\right) h(t) \text { and } \Phi_{n}(t) h^{\prime}(t)=\Phi\left(T_{\nu}(t)\right) h^{\prime}(t)
$$

Moreover, the functions Φh and Φh^{\prime} belong to $\left(\mathcal{C}^{0}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})\right)^{N}$. Observe first that the sequence $\left\{h\left(u_{n}\right) \varphi\right\}_{n}$ is bounded in $W_{0}^{1} L_{M}(\Omega)$. Indeed, let $\rho>0$
be a positive constant such that $\left\|h\left(u_{n}\right) \nabla \varphi\right\|_{\infty} \leq \rho$ and $\left\|h^{\prime}\left(u_{n}\right) \varphi\right\|_{\infty} \leq \rho$. Using the convexity of the N-function M and taking into account (4.5) we have

$$
\begin{aligned}
\int_{\Omega} M\left(\frac{\left|\nabla\left(h\left(u_{n}\right) \varphi\right)\right|}{2 \rho}\right) d x & \leq \int_{\Omega} M\left(\frac{\left|h\left(u_{n}\right) \nabla \varphi\right|+\left|h^{\prime}\left(u_{n}\right) \varphi\right|\left|\nabla u_{n}\right|}{2 \rho}\right) d x \\
& \leq \frac{1}{2} M(1)|\Omega|+\frac{1}{2} \int_{\Omega} M\left(\left|\nabla u_{n}\right|\right) d x \\
& \leq \frac{1}{2} M(1)|\Omega|+\frac{1}{2} C_{2} .
\end{aligned}
$$

This, together with (4.7), imply that

$$
\begin{equation*}
h\left(u_{n}\right) \varphi \rightharpoonup h(u) \varphi \text { weakly in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right) \tag{4.34}
\end{equation*}
$$

This enables us to get

$$
\left\langle f_{n}, h\left(u_{n}\right) \varphi\right\rangle \rightarrow\langle f, h(u) \varphi\rangle
$$

Let E be a measurable subset of Ω. Define $c_{\nu}=\max _{|t| \leq \nu} \Phi(t)$. Let us denote by $\|v\|_{(M)}$ the Orlicz norm of a function $v \in L_{M}(\Omega)$. Using strengthened Hölder inequality with both Orlicz and Luxemburg norms, we get

$$
\begin{aligned}
\left\|\Phi\left(T_{\nu}\left(u_{n}\right)\right) \chi_{E}\right\|_{(\bar{M})} & =\sup _{\|v\|_{M} \leq 1}\left|\int_{E} \Phi\left(T_{\nu}\left(u_{n}\right)\right) v d x\right| \\
& \leq c_{\nu} \sup _{\|v\|_{M} \leq 1}\left\|\chi_{E}\right\|_{(\bar{M})}\|v\|_{M} \\
& \leq c_{\nu}|E| M^{-1}\left(\frac{1}{|E|}\right)
\end{aligned}
$$

Thus, we get

$$
\lim _{|E| \rightarrow 0} \sup _{n}\left\|\Phi\left(T_{\nu}\left(u_{n}\right)\right) \chi_{E}\right\|_{(\bar{M})}=0
$$

Therefore, thanks to (4.7) by applying [27, Lemma 11.2] we obtain

$$
\Phi\left(T_{\nu}\left(u_{n}\right)\right) \rightarrow \Phi\left(T_{\nu}(u)\right) \text { strongly in }\left(E_{\bar{M}}\right)^{N}
$$

which jointly with (4.34) allow us to pass to the limit in the third term of (4.33) to have

$$
\int_{\Omega} \Phi\left(T_{\nu}\left(u_{n}\right)\right) \nabla\left(h\left(u_{n}\right) \varphi\right) d x \rightarrow \int_{\Omega} \Phi\left(T_{\nu}(u)\right) \nabla(h(u) \varphi) d x
$$

We remark that

$$
\left|a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} h^{\prime}\left(u_{n}\right) \varphi\right| \leq \rho a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n}
$$

Consequently, using (4.32) and Vitali's theorem, we obtain

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} h^{\prime}\left(u_{n}\right) \varphi d x \rightarrow \int_{\Omega} a(x, u, \nabla u) \nabla u h^{\prime}(u) \varphi d x
$$

and

$$
\int_{\Omega} F \nabla u_{n} h^{\prime}\left(u_{n}\right) \varphi d x \rightarrow \int_{\Omega} F \nabla u h^{\prime}(u) \varphi d x
$$

For the second term of (4.33), as above we have

$$
h\left(u_{n}\right) \nabla \varphi \rightarrow h(u) \nabla \varphi \text { strongly in }\left(E_{M}(\Omega)\right)^{N},
$$

which together with (4.27) give

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla \varphi h\left(u_{n}\right) d x \rightarrow \int_{\Omega} a(x, u, \nabla u) \nabla \varphi h(u) d x
$$

and

$$
\int_{\Omega} F \nabla \varphi h\left(u_{n}\right) d x \rightarrow \int_{\Omega} F \nabla \varphi h(u) d x .
$$

The fact that $h\left(u_{n}\right) \varphi \rightharpoonup h(u) \varphi$ weakly in $L^{\infty}(\Omega)$ for $\sigma^{*}\left(L^{\infty}, L^{1}\right)$ and (4.29) enable us to pass to the limit in the fourth term of (4.33) to get

$$
\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) h\left(u_{n}\right) \varphi d x \rightarrow \int_{\Omega} g(x, u, \nabla u) h(u) \varphi d x
$$

At this point we can pass to the limit in each term of (4.33) to get

$$
\begin{gathered}
\int_{\Omega} a(x, u, \nabla u)\left(\nabla \varphi h(u)+h^{\prime}(u) \varphi \nabla u\right) d x+\int_{\Omega} \Phi(u) h^{\prime}(u) \varphi \nabla u d x \\
+\int_{\Omega} \Phi(u) h(u) \nabla \varphi d x+\int_{\Omega} g(x, u, \nabla u) h(u) \varphi d x \\
=\langle f, h(u) \varphi\rangle+\int_{\Omega} F\left(\nabla \varphi h(u)+h^{\prime}(u) \varphi \nabla u\right) d x
\end{gathered}
$$

for all $h \in \mathcal{C}_{c}^{1}(\mathbb{R})$ and for all $\varphi \in \mathcal{D}(\Omega)$. Moreover, as we have (3.5), (4.6) and (4.30) we can use Fatou's lemma to get $g(x, u, \nabla u) u \in L^{1}(\Omega)$. By virtue of (4.7), (4.27), (4.29), (4.31), the function u is a renormalized solution of problem (1.1).

Acknowledgments

We would like to thank the referees for careful reading of the first version of this manuscript and providing many helpful suggestions and comments...

References

1. R. Adams, Sobolev Spaces, Ac. Press, New york, 1975.
2. L. Aharouch, J. Bennouna, A. Touzani, Existence of Renormalized Solution of Some Elliptic Problems in Orlicz Spaces, Rev. Mat. Complut., 22(1), (2009), 91-110.
3. A. Aissaoui Fqayeh, A. Benkirane, M. El Moumni, A. Youssfi, Existence of Renormalized Solutions for Some Strongly Nonlinear Elliptic Equations in Orlicz Spaces, Georgian Math. J., 22(3), (2015), 305-321.
4. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, An L^{1}-theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(2), (1995), 240-273.
5. A. Benkirane, J. Bennouna, Existence of Renormalized Solutions for Some Elliptic Problems Involving Derivatives of Nonlinear Terms in Orlicz Spaces, Partial differential equations, Lecture Notes in Pure and Appl. Math., 229, (2002), 125-138.
6. A. Benkirane, A. Elmahi, A Strongly Nonlinear Elliptic Equation Having Natural Growth Terms and L^{1} Data, Nonlinear Analysis, 39, (2000), 403-411.
7. A. Benkirane, A. Elmahi, Almost Everywhere Convergence of the Gradients of Solutions to Elliptic Equations in Orlicz Spaces and Application, Nonlinear Anal. T. M. A., 11(28), (1997), 1769-1784.
8. A. Benkirane, A. Elmahi, An Existence Theorem for a Strongly Nonlinear Elliptic Problem in Orlicz Spaces, Nonlinear Anal., 36 (1999), 11-24.
9. M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio, Existence and Uniqueness Results for Nonlinear Elliptic Problems with a Lower Order Term and Measure Datum, C. R. Math. Acad. Sci., Paris 334(9), (2002), 757-762.
10. M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio, Existence of Renormalized Solutions to Nonlinear Elliptic Equations with a Lower-order Term and Right-hand Side a Measure, J. Math. Pures Appl., 82(9), (2003), 90-124.
11. M. F. Betta, O. Guibé, A. Mercaldo, Neumann Problems for Nonlinear Elliptic Equations with L^{1} Data, J. Differential Equations 259, (2015), 898-924.
12. L. Boccardo, D. Giachetti, J.I. Diaz, F. Murat, Existence and Regularity of Renormalized Solutions for Some Elliptic Problems Involving Derivatives of Nonlinear Terms, J. Differential Equations, 106(2), (1993), 215-237.
13. G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized Solutions of Elliptic Equations with General Measure Data, Ann. Scuola Norm. Pisa Cl. Sci., 28(4), (1999), 741-808.
14. A. Dall'Aglio, Approximated Solutions of Equations with L^{1} Data. Application to the Hconvergence of Quasi-Linear Parabolic Equations, Ann. Mat. Pura Appl., 170(4), (1996), 207-240.
15. R. J. DiPerna, P.-L. Lions, On the Cauchy Problem for Boltzmannn Equations: Global Existence and Weak Stability, Ann. Mat., 130, (1989), 321-366.
16. R.J. DiPerna, P.-L. Lions, Global Existence for the Fokker-Planck-Boltzman Equations, Comm. Pure Appl. Math., 11(2) ,(1989), 729-758.
17. S. Djebali, O. Kavian, T. Moussaoui, Qualitative Properties and Existence of Solutions for a Generalized Fisher-like Equation, Iranian Journal of Mathematical Sciences and Informatics, 4(2), (2009), 65-81.
18. T. K. Donaldson, N. S. Trudinger, Orlicz-Sobolev Spaces and Imbedding Theorems, J. Funct. Anal., 8, (1971), 52-75.
19. J. Gossez, A Strongly Nonlinear Elliptic Problem in Orlicz-Sobolev Spaces, Proc. A.M.S. Sympos. Pure Math., 45, (1986), 455-462.
20. J. Gossez, Nonlinear Elliptic Boundary Value Problems for Equations with Rapidly (or slowly) Increasing Coefficients, Trans. Amer. Math. Soc., 190, (1974), 163-205.
21. J. Gossez, Some Approximation Properties in Orlicz-Sobolev Spaces, Studia Math., 74, (1982), 17-24.
22. J.-P. Gossez, V. Mustonen, Variational Inequality in Orlicz-Sobolev Spaces, Nonlinear Anal. Theory Appl., 11, (1987), 379-392.
23. O. Guibé, A. Mercaldo, Existence of Renormalized Solutions to Nonlinear Elliptic Equations with two Lower Order Terms and Measure Data, Trans. Amer. Math. Soc., 360(2), (2008), 643-669.
24. O. Guibé, A. Mercaldo, Existence and Stability Results for Renormalized Solutions to Noncoercive Nonlinear Elliptic Equations with Measure Data, Potential Anal., 25(3), (2006), 223-258.
25. B. Hazarika, Strongly Almost Ideal Convergent Sequences in a Locally Convex Space Defined by Musielak-Orlicz Function, Iranian Journal of Mathematical Sciences and Informatics, $\mathbf{9}(2)$, (2014), 15-35.
26. E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1965.
27. M.A. Krasnosel'skii, Y.B. Rutickii, Convex Functions and Orlicz Space, Noordhoff, Groningen, 1961.
28. F. Murat, Soluciones Renormalizadas de EDP Ellipticas no Lineales, Cours à l'Université de Séville, Mars 1992. Publication 93023 du Laboratoire d'Analyse Numérique de l'Université Paris VI, 1993.
29. F. Murat, Équations Elliptiques non linéaires avec Second Membre L^{1} ou Mesure, $26^{\text {ème }}$ Congrès National d'Analyse Numérique. Les Karellis, Juin, (1994), 12-24.
30. J.M. Rakotoson, Uniqueness of Renormalized Solutions in a T-set for the L^{1}-Data and the Link between Various Formulations, Indiana Univ. Math. J., 43(2), (1994), 685-702.
31. A. Youssfi, A. Benkirane, M. El Moumni, Bounded Solutions of Unilateral Problems for Strongly Nonlinear Equations in Orlicz Spaces, E. J. Qualitative Theory of Diff. Equ., 21, (2013), 1-25.
